Optimization and synthesis process of biodiesel production from coconut oil using central composite rotatable design of response surface methodology

Author:

Kannan Rajesh1,Ramalingam Sathiyamoorthi2ORCID,Sampath Senthil3,Nedunchezhiyan Mukilarasan4,Dillikannan Damodharan5,Jayabal Ravikumar6ORCID

Affiliation:

1. Department of Mechanical Engineering, RMK College of Engineering and Technology, Chennai, Tamil Nadu, India

2. Department of Mechanical Engineering, Chennai Institute of Technology, Chennai, Tamil Nadu, India

3. Department of Mechanical Engineering, Panimalar Engineering College, Chennai, Tamil Nadu, India

4. Department of Mechanical Engineering, Academy of Maritime Education and Training, Kanathur, Tamil Nadu, India

5. Department of Mechanical Engineering, Jeppiaar Engineering College, Chennai, Tamil Nadu, India

6. Department of Thermal Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India

Abstract

In the transportation and power production industries, the use of renewable and environmentally friendly fuels has grown in importance. Biodiesel derived from coconut oil contains over 90% saturated fatty acids. Biodiesel was made using alkaline transesterification since coconut oil has a free fatty acid content of less than 2.5%. Enzymatic or chemical transesterification are both possible. For the synthesis of coconut biodiesel, the optimal processing conditions are 60 °C for 1 h, a 6:1 ratio, 1% potassium hydroxide and a 95% yield. According to the experiment, 55 °C was the ideal reaction temperature for using coconut oil to produce biodiesel. Sixty minutes was the ideal amount of time to extract biodiesel from coconut oil. The methanol-to-oil molar ratio raised yield from 6:1 to 8:1, a 95% increase. Significant amounts of an alkaline catalyst, which allows soap to develop under the influence of fatty acids, are responsible for the high yield response; it is concluded that 1 wt% would be an appropriate catalyst concentration for the present investigation. The central composite rotatable design (CCRD) of the response surface methodology method is used to optimize several process parameters, including temperature, reaction duration, methanol-to-oil ratio and catalyst concentration. The CCRD optimization approach produced better results. The following are the final, optimized results: coconut oil methyl ester ratio: 96.69%, temperature: 55 °C; duration: 59.2 min; catalyst concentration: 0.7; molar ratio: 6.4.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3