Experimental investigation on powder processing and its flow properties of AlSi10Mg alloy with niobium carbide for additive manufacturing

Author:

Radhakrishnan Raj Mohan1ORCID,Ramamoorthi Venkatraman1ORCID,Srinivasan Raghuraman1

Affiliation:

1. School of Mechanical Engineering, Shanmugha Arts, Science, Technology & Research Academy (SASTRA Deemed to be University), India

Abstract

In this study, aluminium-silicon alloy AlSi10Mg powder of spherical morphology was mixed with niobium carbide powder had irregular morphology in weight percentages of 2, 4, 6 and 8 and processed in a planetary ball mill apparatus. The optimal conditions for powder processing were a mixing time of 1.95 h and a speed of 71 RPM without milling balls. The use of milling balls was avoided to maintain the morphology of AlSi10Mg from degradation and improve the flowability of composite powder. To evaluate the flowability of processed powders, flow properties such as apparent density, tapped density, Hausner’s ratio, Carr index, static angle of repose and Hall flow rate were determined. Selective laser melting was used to fabricate AlSi10Mg composite specimens with varying percentages of niobium carbide. Finally, at 6% niobium carbide, the selective laser melting cube specimen had a maximum relative density of 99.21%.

Funder

SASTRA University

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3