Graphene-gold/PDMS Maxwell hybrid nanofluidic flow in a squeezed channel with linear and irregular radiations

Author:

Bhargavi Dhanekula Naga1,Gangadhar Kotha2ORCID,Chamkha Ali J.3

Affiliation:

1. Department of Mathematics, Vignan's Nirula Institute of Technology and Science for Women, Palakaluru, Guntur, Andhra Pradesh, India

2. Department of Mathematics, Acharya Nagarjuna University, Ongole Campus, Andhra Pradesh, India

3. Faculty of Engineering, Kuwait College of Science and Engineering, Doha District, Kuwait

Abstract

The hydrothermal performance of a hybrid nanofluid made of graphene, gold/polydimethylsiloxane between two squeezing plates is discussed in this study. In the investigation of thermal transport of the flow, both linear and nonlinear thermal radiation's effects are taken into account. Bejan numbers are used to determine the system's energy efficiency. Viscous and thermal radiation effects on Maxwell hybrid nanofluid flow in a squeezing channel are incorporated to explore the outcomes. By applying similarity transformations, the set of ordinary differential equations in this case is transformed into the governing equations. With the use of the Runge–Kutta–Fehlberg technique converted system is solved numerically. Skin friction and heat transfer rates under the influence of certain oriented parameters are numerically analysed and presented in tabular form. The impacts of different factors on the temperature and velocity profiles are illustrated graphically and briefly described. Important findings include that the Bejan number raises as the radiation parameter Rd rises, but that it falls with respect to the Eckert number effect. Additionally, the skin friction values and Nusselt number in the hybrid nanofluid case are larger than in the nanofluid case. Furthermore, it has been found that the Deborah number-described stress relaxation phenomenon causes the flow field and thermal energy transfer to be less efficient when fluids are moving. There is surprisingly little research on the hybrid fluid integrated into their issues.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3