Exergetic performance optimization and thermoeconomic analysis of a variable compression ratio diesel engine fueled with distilled plastic oil and diesel doped with nanographene

Author:

Das Amar Kumar1,Mohapatra Taraprasad2ORCID

Affiliation:

1. Department of Mechanical Engineering, Gandhi Institute For Technology (GIFT) Autonomous, Bhubaneswar, Odisha, India

2. Department of Mechanical Engineering, C.V. Raman Global University, Bhubaneswar, Odisha, India

Abstract

Due to the fast depletion of fossil fuels, enormous concerns about environmental pollution, and advocacy for waste-to-energy drives from the global perspective, compression ignition engines need a sustainable alternative fuel source. Enormous plastic wastes were generated in health sectors, particularly during post-pandemic. In this context, the study intends to introduce a reasonable solution for such waste plastics recycling by converting them into liquid oil by pyrolysis followed by the distillation process. Distilled waste plastic oil (DPO) extracted from medical plastic waste is a potential alternative diesel source. The performance of the engine significantly increases when nanographene is added with DPO/diesel blends, which act as a combustion improviser. The energy efficiency (η1), exergy efficiency (η2), and brake-specific fuel consumption (BSFC), which are regarded as key performance indicators, exhibited promising results when operated with 20% DPO +100 ppm nanographene (20DPO100G) emulsified fuel mixture as compared to normal diesel. When compared to diesel and other fuel combinations, the energy efficiency (η1) and exergy efficiency (η2) for 20DPO100G fuel mixture were found enhanced by 5.78% and 10.9%, respectively, and lowest by 14.7% for BSFC in comparison to diesel. The optimum energy efficiency, exergy efficiency, and minimum BSFC were obtained for the test engine from response surface methodology multi-objective optimization analysis as 31.44%, 22.12%, and 0.32 kg/kW-hr, respectively, for the composite desirability, D of 0.974. The 100 ppm nanographene emulsified distilled waste plastic pyrolysis oil and diesel blend has the lowest relative cost variation of −14.583.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3