Flexural waves analysis and enhancement of bandgap properties of a periodic track structure

Author:

Iqbal Mohd1ORCID,Kumar Anil1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India

Abstract

Periodic structures possess frequency bandgaps wherein the waves cannot pass through. Here, the propagation behaviour of vertical and lateral flexural waves and its control in a railway track supported on periodic sleeper blocks connected using fasteners is investigated. The dispersion relationships for two kinds of waves are derived through Floquet–Bloch theorem, and the ensuing band structures are validated from finite element (FE) models. The results demonstrate that a Bragg and a locally resonant (LR) bandgap evolve in the track for both types of waves in the examined frequency range. However, the bandwidth of these bandgaps is found to be very small. Thus, waves can freely propagate in the track for a large frequency range, causing vibration and noise. Subsequently, the dependence of transmission properties of waves on the number of unit cells is studied. It is observed that the attenuation in the bandgap is significantly improved on increasing the number of unit cells. Further, to tune the bandgap properties, a single-degree-of-freedom resonator (SDoF) is used in the middle of each unit cell of the track. Afterwards, the parametric influence of resonator properties, that is, mass, stiffness and damping, on bandgaps is investigated in depth. Moreover, the phenomenon of bandgaps coupling is demonstrated when the resonator is tuned near the Bragg bandgap. The results provided herein are promising to realize the characteristics of flexural waves and to design resonators for track structures.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3