Thermally radiated micro-polar fluid with space-dependent heat source: Modified Cattaneo-Christov heat flux theory

Author:

Gangadhar Kotha1ORCID,Prameela Macharla2,Chamkha Ali J.3

Affiliation:

1. Department of Mathematics, AcharyaNagarjuna University Campus, Ongole, Andhra Pradesh, India

2. Department of Mathematics, Prasad V. Potluri Siddharth Institute of Technology, Vijayawada, Andhra Pradesh, India

3. Faculty of Engineering, Kuwait College of Science and Technology, Doha District, Kuwait

Abstract

The principle aim is to investigate the micro-inertia for vertex viscosity effects that were utilized about design to act on heat energy. Heat transfer was imposed out that unsteady distributed stagnation point flow by micro-polar fluid. That define the energy equation, Cattaneo-Christov heat flux figure was used for formal Fourier's law. Effects on exponential space-dependent heat source and linear thermal radiation were more comprise on the interpreted model. Numerical technique finite element method was occupied about the results to ordinary differential equations that were acquired against governing partial differential equations below the convenient equal transformations. This flow reach toward the departure domain displayed the absorbed flow aspect and opposite flow aspect susceptible on that physical parameters elaborate into the analysis. In view of acquired results, we observed that thermal profile downturn about extra sizably higher values of relaxation time, during increase into increasing radiation factor. An increase in vertex viscosity increases angular motion. Moreover, space-dependent heat digestion is extra applicable about cooling process. That more, the acceptance of current results was entire as growing analogy into actual circulated work.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3