Experimental investigation of a two-phase closed thermosyphon with Al2O3/R134a nanorefrigerant

Author:

Anand R.S.1,Jawahar C.P.2ORCID,Brusly Solomon A.3ORCID,Bellos Evangelos4,Ajay Vasanth X.1

Affiliation:

1. Department of Mechanical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India

2. Department of Mechanical Engineering, Amity University Madhya Pradesh, Gwalior, India

3. Centre for Research in Material Science and Thermal Management, Department of Mechanical. Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India

4. Thermal Department, School of Mechanical Engineering, National Technical University of Athens, Athens, Greece

Abstract

Nanorefrigerants are mixtures of refrigerant and nanoparticles, which enhance the heat transfer in both air-conditioning and refrigeration systems. In the present work, the nanorefrigerant Al2O3/R134a is applied in a two-phase closed thermosyphon in order to investigate its thermal performance. More specifically, the influence of the Al2O3/R134a on the thermal resistance and heat transfer coefficient for various heat inputs in a two-phase closed thermosyphon were investigated experimentally. The two-phase closed thermosyphon was tested by varying the concentration of Al2O3 nanoparticles from 0.5% up to 1.5% by weight basis in the usual refrigerant R134a. The results of the experimental investigations indicate that there is a significant enhancement in heat transfer by 93.2% when the nanoparticle concentration of 1.0% was used in R134a when compared to the thermosyphon tested with pure R134a. The nanorefrigerant in thermosyphon has reduced its thermal resistance significantly by 59%. The heat transfer coefficient obtained for nanorefrigerants in two-phase closed thermosyphon is validated by Cooper correlation. It is inferred from the study that the depositions of nanoparticles in the thermosyphon enhance heat transfer. A new correlation to predict the rate of heat transfer is also proposed for employing the nanorefrigerants in a two-phase closed thermosyphon. The predicted correlation, heat transfer coefficient and thermal resistance are optimized by using Grey Relation analysis by computing the grade between the minimum and maximum values obtained from the experimental results.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3