Electrical discharge shape memory alloying of Ti-6Al-4V: Mechanisms and mechanical properties

Author:

Arun Ilangovan1ORCID,Velkavrh Igor2,R Uma Rani3,Annamalai Sivakumar4,C Yuvaraj1

Affiliation:

1. Center for Advance Material Processing, Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh, India

2. Department Tribo Design, V-Research GmbH, Dornbirn, Austria

3. U R Rao Satellite Centre, Bangalore, India

4. Excel Engineering College, Namakkal, Tamilnadu, India

Abstract

Electric discharge alloying presents an alternate coating process for improving mechanical properties through physical and metallurgical modification. Ti-6Al-4 V is a titanium alloy used in aerospace industry and biomechanical applications but has limitations in terms of wear resistance. Alloying with nickel could provide improvements in terms of wear and other tribological properties. Nickel as an alloying element provides pseudo-elastic behaviour (such as two-way shape memory effect) by changing α-Ti to β-Ti. After coating process, surface hardness of the samples increased up to 684 HV0.5 while in the cross-section, it ranged up to 580 HV0.5. Due to porosity, areas with hardness below the base material hardness value of 260 HV0.5 were measured as well. At the lowest load, coefficient of friction had a value of 1.1 while at higher loads it decreased down to 0.8 compared with alloyed layer with average values of 0.3 to 0.7. Wear resistance properties of titanium were improved as well. Specific wear rate under 40 N was 1.0 × 10−5 N/mm2 showing higher wear resistance with minimal ploughing.

Funder

Austrian Development Agency

Science and Engineering Research Board

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3