Prospects of pulsed current arc welding on aerospace grade Hastelloy X

Author:

Sathishkumar M1ORCID,Manikandan M1ORCID,Arivazhagan N1ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India

Abstract

The conventional constant current arc welding of Hastelloy X (Ni-Cr-Fe-Mo) leads to the solidification and liquation cracks in the weldment. The higher heat supplied in constant current weldment develops the secondary carbide precipitates. It promotes the development of hot cracks in the weldment. In this study, joining of Hastelloy X plates was carried out by constant current gas tungsten arc welding (GTAW) and pulsed current gas tungsten arc welding (PCGTAW) with C263 filler wire. The result discovered that no hot cracks were formed in the weldment. In constant current mode, Cr-rich and Mo-rich Cr23C6 (M23C6), Fe2MoC, Fe3Mo3C (M6C), and Cr2Ti precipitates were observed. Whereas, in pulsed current mode, Ni3(Al, Ti), Ni3Ti, Co3Ti, Cr2Ti precipitates are found due to the segregation of Co, Al, and Ti. No Cr-rich and Mo-rich carbide phases identified in pulsed current weldment due to rapid cooling rate and higher thermal gradient observed during solidification. The tensile results revealed that 8.23% increase in the ultimate tensile strength and a 29.62% increase in elongation of pulsed current mode welding compared to constant current welding. Further, the microhardness and impact toughness of PCGTAW is 3.32% and 5.45% higher than GTAW, respectively. In pulsed current welding, better mechanical properties were identified compared to constant current welding. The nonappearance of Cr and Mo-rich phases and refined microstructure in the weldment are the main reason for better strength.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3