Affiliation:
1. Department of Mechanical and Energy Engineering, National Chiayi University, Chiayi, Taiwan
2. Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
Abstract
This study investigated the spray cooling heat transfer performance of Al2O3-water nanofluid given four different subcooling degrees (0 °C, 10 °C, 20 °C, and 30 °C). The results showed that the subcooled nanofluids were ranked in order of a reducing spray cooling heat transfer performance as follows: 20 °C, 10 °C, 0 °C, and 30 °C. On average, the heat transfer coefficient obtained using the nanofluid with 20 °C subcooling was around 8.3%, 8.6%, and 15.6% higher than that obtained with 10 °C, 0 °C, and 30 °C subcooling, respectively. However, the heat transfer performance decreased with an increasing spray operating time. The scanning electron microscopy observations showed that the reduction in the heat transfer coefficient was the result of a gradual increase in the thickness of the nano-adsorption layer on the heated surface as the spray operating time increased.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献