Affiliation:
1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, PR China
2. Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
Abstract
The effects of the warm forming temperature on the axial-pushed incremental rolling process were investigated through finite element analysis and experimental studies. Firstly, the principle of warm axial-pushed incremental rolling process of spline shaft was introduced. Next, the material properties of 42CrMo steel at different forming temperatures were studied to discuss the effects of the warm forming temperature. Through finite element analysis, the simulations of the axial-pushed incremental rolling process were carried out to investigate the effects of the warm forming temperature on rolling forces. The results indicated that the axial and radial forces on the rolling dies were both reduced at the warm forming temperature. Finally, the experiment studies were carried out on a warm axial-pushed incremental rolling equipment. The dimensional precision, microstructure, and hardness of the formed spline shafts at warm temperature were compared with those of the formed spline shafts at room temperature. The results indicated that the spline shafts, which were formed at the warm temperature, possesses of a good dimensional precision and excellent performance. The results in this paper demonstrated that the warm forming temperature has the positive effects on the performance improvement of the axial-pushed incremental rolling process of spline shaft.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献