Modeling and optimization of furan molding sand system using design of experiments and particle swarm optimization

Author:

Chate Ganesh R1,Patel GC Manjunath2,Deshpande Anand S1,Parappagoudar Mahesh B3

Affiliation:

1. Department of Industrial and Production Engineering, KLS Gogte Institute of Technology, Belagavi, India

2. Department of Mechanical Engineering, Sahyadri College of Engineering and Management, Mangalore, India

3. Department of Mechanical Engineering, Sanjeevan Engineering & Technology Institute, Panhala, Kolhapur, India

Abstract

The present research work is focussed on establishing the complex nonlinear input–output relations of a furan resin-based molding sand system. Further, a set of input parameters, which will result in optimized mold properties, is determined. Grain fineness number, setting time, percentage of resin, and hardener are considered as process variables. Mold properties, such as green compression strength, shear strength, mold hardness, gas evolution, permeability, and collapsibility are treated as the process outputs. Nonlinear input–output relations have been developed and statistical analysis has been carried out by utilizing design of experiments, central composite design. Surface plots are developed to study and analyze the input–output relations. The input parameters that will result in best molding conditions and improve casting quality characteristics are determined by utilizing desirability function approach and multiple particle swarm optimization-based crowding distance (MOPSO-CD) techniques. The optimum value for the process variables namely grain fineness number, furan resin, hardener, and setting time are found to be equal to 55, 1.85, 1.2, and 60, respectively. The quality characteristics of the castings namely yield strength, ultimate tensile strength, hardness, density, and secondary dendrite arm spacing are found to improve by 14.03%, 15.08%, 14.14%, 12%, 2.22%, and 12.24%, respectively for the castings made in optimized molding sand conditions.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3