Impacts of Joule heating and viscous dissipation on MHD pulsatile flow of third grade nanofluid in a channel

Author:

Govindarajulu K1,Subramanyam Reddy A1ORCID

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India

Abstract

The current exploration deals with the third grade hydromagnetic pulsating flow of blood-gold nanofluid in a channel with the presence of Ohmic heating, viscous dissipation and radiative heat. In the present analysis, blood (base fluid) is considered as third-grade fluid and gold (Au) as nanoparticle. This investigation is useful in the fields of food processing system, pressure surges (pulsatile flow application), biomedical engineering, nano drug delivery, radiotherapy, and cancer therapeutic (nanofluid application). Perturbation method is employed to transform the set of governing partial differential equations (PDEs) into the ordinary differential equations (ODEs) and then solved by employing the fourth order Runge-Kutta method with the aid of the shooting technique. The impacts of emerging dimensionless parameters of velocity, temperature, and heat transfer rate of blood-Au nanofluid are analysed via pictorial outcomes in detail. The obtained results depict that the improvement in viscous dissipation and heat source enhanced the temperature of third grade nanofluid. The velocity and temperature of the nanofluid are declining functions with the enhancement of frequency parameter, material parameter, and non-Newtonian parameter respectively. Intensifying the volume fraction of nanoparticle dwindles the velocity and temperature of nanofluid. Enhancing volume fraction and viscous dissipation accelerates the heat transfer rate of nanofluid. The velocity, temperature, and heat transfer rates are decreased by an escalation of the Hartmann number. Further, enhancing the radiation parameter reduces the heat transfer rate and temperature of nanofluid.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3