Study on structure optimization of a bubble cap against erosion wear of an S Zorb desulfurization reactor distribution plate

Author:

Jin HZ1,Gao SQ1ORCID,Zhao HL1,Wang C1,Ou GF2

Affiliation:

1. Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University China

2. School of Mechanical Engineering & Rail Transit, Changzhou University, China

Abstract

Bubble cap structures are researched for the particle erosion wear of the distribution plate (tray for short) in an S Zorb desulfurization reactor. The semi-empirical model of erosion wear prediction of gas–solid two-phase flow is revised by means of erosion wear experiments at high temperature and high speed. According to the revised erosion wear, the influence of the h0 (the distance from the bottom of the bubble cap to the tray), h1 (distance from the outlet of the lifting pipe to the top of the bubble cap interface), N (the number of cavities), d0 (the inner diameter of bubble cap) on erosion wear of trays are studied. The results show that a smaller h0 will make the erosion degree of the tray more serious; it is recommended to keep h0 = 17 mm. A larger h1 will alleviate the erosion wear degree of adsorbent particles on the tray, but considering the efficiency of the reaction, h1 = 36 mm is more appropriate. The increase of N reduces the erosion wear less but enhances the fluid disturbance and makes the erosion wear area unstable; so, N should be kept at 10. The increase of d0 reduces the velocity and density of fluid impacting the tray, thus reducing the erosion wear degree, which is an effective means.

Funder

the National Natural Science Foundation of China

National Key R &D Program of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3