Computational fluid dynamics modelling of multiphase flows in double elbow geometries

Author:

Ogunsesan Oluwademilade Adekunle1ORCID,Hossain Mamdud1ORCID,Droubi Mohamad Ghazi1

Affiliation:

1. School of Engineering, Robert Gordon University, Aberdeen, UK

Abstract

This study investigates the effects of elbow on the transition and development of multiphase flow using computational fluid dynamics modelling techniques. The Eulerian - Multifluid VOF model coupled with an Interfacial Area Transport Equation has been employed to simulate air-water two-phase flow in a pipe with two standard 90 degree elbows mounted in series. Turbulence effects were accounted for by the RNG k-ε model. The effects of separation distance on two-phase flow development have been studied for initial slug and churn flow regimes. Computational fluid dynamics simulation results of phase distribution and time series of void fraction fluctuations were obtained and they showed good agreement with available experimental data. The results show that for initial slug flow regime, there is no flow regime transformation upstream and downstream of the two elbows. While at initial churn flow regime, flow regime transformation occurs at different sections of the flow domain before and after the two elbows. It was noticed that irrespective of the flow regime, the amplitudes and frequencies of void fraction fluctuation become smaller as the fluid flows along the pipe. Changes in the separation distance between the two elbows have larger effects on the flow at churn flow regime.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3