Monitoring the continuous manufacture of a polymeric foam via a thermokinetic-informed acoustic technique

Author:

Holt Joseph AORCID,Torres-Sanchez CarmenORCID,Conway Paul P1

Affiliation:

1. Multifunctional Materials Manufacturing Lab, Wolfson School of Mechanical, Loughborough University, UK

Abstract

Polymer foams are difficult to characterise due to rapidly evolving physical features from liquid to porous solid. Swift changes in volume, porosity and moduli render many techniques challenging for the characterisation of the foam curing during a manufacturing process. A technique that employs the longitudinal speed of sound of an ultrasonic signal, informed by a thermokinetic model, is proposed as an in situ, in-line, non-destructive and continuous monitoring tool during the production of rigid polyurethane foams. This study demonstrates that speed of sound measurements are suitable for (a) continuous characterisation of different foaming stages in the polymer reaction and curing; (b) determining the degree of cure for the continuous monitoring of foams, and (c) predicting mechanical properties (i.e., stiffness and Poisson's ratio) of cured foam samples. The validity of this monitoring technique is confirmed by comparison with well-established methods that use physical characteristics (e.g., expansion rate, electrical properties), thermo-kinetic models and mechanical testing. This method positions itself as a monitoring tool and convenient method for determining material stiffness during production.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3