Effect of cathode-side gas flow channels section geometry on the removal process of liquid slug in a proton exchange membrane fuel cell

Author:

Abdollahi Mir Ali Asghar1,Jafarmadar Samad1ORCID,Jabbary Ali1,Amini Niaki Seyed Reza2ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran

2. Japan Agency for Marine-Earth Science and Technology; 3173-25 Showa-machi, Kanazawa-Ku, Yokohama 236-0001, Japan

Abstract

In low operating temperatures, provided water of Proton-Exchange Membrane Fuel Cells (PEMFCs) is discharged in the state of tiny/large droplets, slugs, and semi-slugs, which strongly depends on the flow channels' characteristics. In this study, the discharge capabilities of channels with different height-to-width aspect ratios are inspected using a transient two-phase numerical simulation. The numerical model includes a segment of the gas channel on the cathode side, and the operating conditions are those related to an actual fuel cell application. Results showed that channels with minimum height could lift the initial slug to the upper part 2.16 times faster and immediately form film flow at the corners. For a fixed width, decreasing channel height from 1.5 mm to 0.5 mm, results in 38.3% faster discharge time and a 62.3% increment in the clearance rate of the gas-diffusion layer. For higher channels, the combined effect of shear stress, gravity, and the adhesive forces of hydrophilic walls cannot lift the initial slug continuously and causes it to rupture, distort, and partially spread over the Gas-diffusion layer (GDL) surface, which leads to mass transport limitation for the cell. Furthermore, when the channel width decreases from 1.5 mm to 0.5 mm for a fixed height, the initial slug leaves the computational domain 51.1% faster. Overall, it was found that the smaller dimensions for height and width show superior cell performance regarding faster water removal, clearer GDL surface, and more uniform flow distribution over the entire electrochemical active area. A channel with a cross-section dimension of 0.5 mm × 0.5 mm is suggested as the best channel design among the analyzed cases for maximum efficiency for the cathode-side flow fields of a PEMFC.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3