Biconvective transport of magnetized couple stress fluid over a radiative paraboloid of revolution

Author:

Gangadhar K.1ORCID,Manasa Seshakumari P.1,Venkata Subba Rao M.2ORCID,Chamkha Ali J.3

Affiliation:

1. Department of Mathematics, Acharya Nagarjuna University Campus, Ongole, Andhra Pradesh, India

2. Division of Mathematics, Department of Sciences and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Andhra Pradesh, India

3. Faculty of Engineering, Kuwait College of Science and Engineering, Doha District, Kuwait

Abstract

In the present study, the physical features of the bioconvective MHD flow of a couple stress fluid over an upper horizontal surface (i.e. surface shaped like a submarine or any ( uhsp) aerodynamical automobile) is analysed by considering radiation and viscous dissipation effects. In the fluid-saturated domain flow is induced due to the reaction of catalytic surface, double diffusion and stretching fluid layers. In fact, couple stress fluid is electrically conducted because non-uniform magnetic field is imposed. With the assistance of appropriate similarity transformations governing equations of the study are reduced to set of ordinary differential equations. Thereafter, built-in MATLAB solver bvp4c is implemented to solve the system numerically. By means of graphs and tables variations of the velocity, temperature, concentration, friction factor, local heat and mass transfer rates are observed thoroughly by varying the flow controlling parameters. From this analysis, main observations are, for rising values of couple stress and magnetic parameter velocity is decline, whereas temperature rises for the same parameters and increase in the thermal boundary layer is noted for the Brinkman number, whereas reverse trend is noted in the concentration boundary layer. Finally, comparison is done and a good correlation is identified between the present analysis and perversely recorded analysis.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3