An XFEM-Based Approach to Fatigue Crack Growth in Press-Fit Spur Gears

Author:

Güven Fatih1ORCID

Affiliation:

1. Başkent OSB Vocational School of Technical Sciences, Department of Machinery and Metal Technologies, Hacettepe University, Ankara, Turkey

Abstract

Gears mounted on a shaft via interference fit are the subject of an internal pressure which is essential for power transmission between gear and shaft. The pressure between shaft and gear is responsible for additional stresses occurring both in shaft and gear. This study examines the effect of stresses arising due to the interference on the crack growth that exists at the root of the gear tooth. The numerical analyses were conducted on models having different rim thicknesses by using the extended finite element method that allows mesh-independent crack modeling and does not need re-meshing. The results showed that internal pressure yields additional stresses in the tangential direction. The increment in tangential stress changed the location and intensity of the maximal 1st principal stress and accelerated crack growth. As the tightness of the fit increased, the crack turned towards the rim rather than towards the tooth. As the crack growth through the rim may cause a catastrophic failure of gear, the increment in tangential stress due to internal pressure is crucial for the fatigue life of the gear.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3