Numerical assessment of hydrodynamic and mixing characteristics for mixed electroosmotic and pressure-driven flow through a wavy microchannel with patchwise surface heterogeneity

Author:

Vasista Kasavajhula Naga1,Mehta Sumit Kumar1ORCID,Pati Sukumar1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Silchar, India

Abstract

The micromixing of two fluids plays a vital role in lab-on-a-chip devices. For obtaining better mixing efficiency, we propose a micromixer using patchwise surface potential heterogeneity and wavy wall. We numerically investigate the hydrodynamic and mixing characteristics for flow through a microchannel with a straight top wall and wavy bottom wall. The primary flow is actuated by an external pressure-gradient and patches are placed at the top wall with positive zeta potential, such that the reversed electroosmotic actuation forms the recirculation zones close to the top wall. The streamlines, flow velocity, recirculation zone velocity, species concentration, flow rate, and mixing efficiency are investigated by varying the relative pressure-gradient strength, Debye parameter, zeta potential and wavy surface amplitude. Two different configurations are considered by placing the patches at the top wall, opposite to the peaks and valleys of the bottom wavy surface, respectively. It reveals that the recirculation zone velocity increases with the increase in both Debye parameter and surface amplitude, whereas it decreases with relative pressure-gradient strength near the patch surfaces. The flow rate decreases with the increase in zeta potential and we also identify the values of zeta potential for chocking of flow in the microchannel. It reveals that the mixing efficiency monotonically increases with surface amplitude, and the variation with zeta potential is non-monotonic. We also identify the range of zeta potential for which the value of mixing efficiency is higher than 90% for different configurations of the channel.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3