Multi-response optimization of input and output responses of multipass FSP of AA7050 with (SiC + TiB2) nanoparticles by response surface methodology

Author:

Chittoriya Bharat Singh1ORCID,Jayant Arvind2,Kumar Rakesh1

Affiliation:

1. Mechanical Engineering Department, Sant Longowal Institute of Engineering & Technology, Longowal, Sangrur, India

2. Department of Management, Indira Gandhi Delhi Technical University for Women, Delhi, India

Abstract

In this work, multi-response optimization of output and input responses of multipass friction stir processing (MPFSP) of AA7050 with (SiC + TiB2) nanoparticles by response surface methodology based on the center composite design and metallurgical characterization were analyzed, and the optimum parameters of the MPFSP were discussed. At high tool rotational speed (TRS) of 1100 rpm with 50% TiB2 and 100% SiC nanoparticles, maximum joint efficiency (137.80%) was observed due to uniformly dispersed SiC and TiB2 within the matrix, serving as practical obstacles to dislocation motion, hindering plastic deformation, and facilitating enhanced mechanical properties. MPFS and nanoparticles broke the coarse grain structure of the base metal and produced a fine and homogenous grain structure in the stir zone. Increasing the concentration of reinforcement particles and FSP passes (1 to 4) inhibited grain boundary migration and significantly reduced the high-angle grain boundary and grain size. The optimized value of input parameters TRS, TiB2 nanoparticles, and SiC nanoparticles was observed as 1068 rpm, 56%, and 97%, while the optimized value of output response tensile strength, % strain, and hardness value was found as 569.16 MPa, 20.79, and 148.32 HV respectively. The p-value for all three models remained below 0.05, indicating a confidence level exceeding 95% in the constructed models, rendering them suitable for design exploration. The hardness value range of MPFSP/(SiC + TiB2) lies between 130 HV and 190 HV. The minimum hardness value of 131.03 HV was observed at 0% TiB2 and 50% SiC reinforcement particles with TRS of 1100 rpm, while the highest microhardness (187.02 HV) was perceived at 1000 rpm.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3