Optimum waste heat recovery from diesel engines: Thermo-economic assessment of nanofluid-based systems using a robust evolutionary approach

Author:

Yousefi Moslem1,Hooshyar Danial2,Kim Joong H3,Rosen Marc A4,Lim Heuiseok2

Affiliation:

1. Department of Mechanical Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran

2. Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea

3. School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea

4. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), Oshawa, ON, Canada

Abstract

Nearly 30% of the input energy to a diesel engine is wasted through the exhaust gas; thus, considerable attention has been directed toward developing efficient heat recovery systems for these engines. Given the demonstrated ability of nanofluids to boost the heat transfer rate of heat exchangers, these heat transfer fluids merit consideration for use in diesel exhaust heat recovery systems. In this study, the effects of employing nanofluids on the optimum design of these systems are investigated. An existing heat diesel engine exhaust heat recovery system is modeled to work with Al2O3/water and a modified imperialist competitive algorithm is employed for the optimization. Seven variables consisting of five heat exchanger geometric characteristics together with nanoparticle volume fraction and coolant mass flow rate are considered as design variables. The heat exchanger cost and charging rate of the storage tank are optimization objectives, while the greenhouse gas savings of the heat recovery system are assessed for measuring the environmental impact of the energy recovery. The results indicate that the proposed approach can overcome the challenge of finding the near-optimal design of this complex system and using nanofluids enhances the performance of the heat recovery heat exchanger.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3