Evolution of phases during tempering of P91 steel at 760℃ for varying tempering time and their effect on microstructure and mechanical properties

Author:

Pandey C1,Mahapatra MM1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand, India

Abstract

In the present investigation, a systematic study has been undertaken with regard to the effects of tempering time on room temperature mechanical properties of P91 (X10CrMoVNNB9-1) steel. Samples cut from P91 (X10CrMoVNNB9-1) industrial pipe were normalized at 1040 ℃ for 40 min and then tempered at 760 ℃ for different tempering times starting from 2 h to 8 h. Detailed analysis of microstructure, particle size, inter-particle spacing, and secondary phase carbide particles of the tempered samples was conducted by secondary electron microscopy technique. Optical microscopy was also utilized to characterize the tempered samples and for the measurement of grain size. In order to reveal the various phases formed during tempering of P91 (X10CrMoVNNB9-1) steel, X-ray diffraction was carried out . To study the fracture surface morphology of tensile tested and impact tested specimen field-emission scanning electron microscopy was carried out. The effect of tempering time on the microstructural parameters revealed an increase in grain size up to 4 h of tempering and then decreased because of recrystallization. The coarsening of secondary phase carbide particles M23C6 was revealed with an increase in tempering time. As a consequence, yield strength, hardness, and ultimate tensile strength were observed to decrease with increase in the tempering time. However, a drastic change was observed in the yield strength, ultimate tensile strength, and toughness after tempering for 6 h. From the present study, it was concluded that optimum combination of yield stress, ultimate tensile strength, hardness, and toughness obtained after tempering at 760 ℃ for 6 h.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3