An entire life-cycle rolling bearing remaining useful life prediction method using new degradation feature evaluation indicators

Author:

Song Xudong1,Sun Jialiang2ORCID,Li Changxian3

Affiliation:

1. School of Computer and Communication Engineering, Dalian Jiaotong University, Dalian, Liaoning, China

2. Software Institute, Dalian Jiaotong University, Dalian, Liaoning, China

3. School of Automation and Electrical Engineering, Dalian Jiaotong University, Dalian, Liaoning, China

Abstract

The rolling bearing remaining useful life (RUL) prediction is a hot topic issue in the field of rail transportation. The existing RUL prediction methods for rolling bearing have problems such as unreasonable division of rolling bearing degradation stages and incomplete extraction of degradation features by feature selection indicators. In order to solve these problems, an entire life-cycle rolling bearing RUL prediction method using new degradation feature evaluation indicators is proposed. Firstly, the degradation feature evaluation indicator is designed to evaluate the stability of the degradation feature. Then, the combination of stability evaluation indicator and correlation evaluation indicator is used as the basis for feature selection. Secondly, the Gaussian Mixture Model (GMM) method is fused with the Support Vector Machine (SVM) to divide the bearing entire life-cycle into three stages: normal stage, early degradation stage, and degradation stage. Finally, the Long Short-Term Memory (LSTM) network model is trained separately to predict the rolling bearing RUL for different rolling bearing degradation stages. The effectiveness of the proposed prediction method based on different degradation stages of rolling bearing in predicting the RUL of rolling bearing is verified through PRONOSTIA bearing dataset. The comparison with existing methods shows that this approach demonstrates superior accuracy and predictive performance. For example, the Mean Square Error (MSE) evaluation metric has decreased by 60%. The Root Mean Square Error (RMSE) evaluation metric has decreased by 36.5%. The Mean Absolute Error (MAE) evaluation metric has decreased by 48.6%. The Mean Absolute Percentage Error (MAPE) evaluation metric has decreased by 36.9%.

Funder

Department of Science and Technology of Liaoning Province

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3