Recovery of Cr from chrome-containing leather waste and its utilization as reinforcement along with waste spent alumina catalyst and grinding sludge in AA 5052-based metal matrix composites

Author:

Dwivedi Shashi P1ORCID,Sahu Rohit12ORCID,Saxena Ambuj1ORCID,Dwivedi Vijay K3,Srinivas Krovvidi2,Sharma Shubham4ORCID

Affiliation:

1. G. L. Bajaj Institute of Technology & Management, India

2. Department of Mechanical Engineering, Delhi Technological University, India

3. Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, India

4. Department of Mechanical Engineering, IK Gujral Punjab Technical University, India

Abstract

The present investigation deals with the development of AA 5052-based metal matrix composites (MMCs) by utilizing industrial wastes, spent alumina catalyst, chrome-containing leather waste, and grinding sludge as a reinforcement material. The chrome-containing leather waste has been utilized to extract the collagen powder, which is a form of chromium oxide. The presence of Al2O3, Fe2O3, and SiO2 phases in the spent alumina catalyst and grinding sludge ball-milled powder encourages its utilization as reinforcement material (in the form of Cr) for the development of MMCs. The stir-casting technique has been used to develop the aluminum-based MMC with waste spent alumina catalyst, chrome-containing leather waste, and grinding sludge. Further, results revealed that the matrix material mechanical properties compressive strength, tensile strength, and hardness were significantly increased by 12.93%, 5.34%, and 31.81% after adding spent alumina catalyst, Cr, and grinding sludge with the weight percentage (wt.%) of 4.5%, 1.5%, and 4.5%, respectively, but the toughness was reduced. The microstructural investigation indicated the uniform distribution of reinforcing elements spent alumina catalyst (4.5 wt.%), GS (4.5%), and Cr (1.5%) in the aluminum matrix material. Further, the influence of given reinforcement elements on the thermal expansion and corrosion weight loss properties of aluminum alloy matrix material has also been investigated.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3