In-situ computed tomography and transient dynamic analysis – failure analysis of a single-lap tensile-shear test with clinch points

Author:

Reschke G1ORCID,Köhler D2,Kupfer R2,Troschitz J2,Gude M2,Brosius A1

Affiliation:

1. Chair of Forming and Machining Processes, TUD Dresden University of Technology, Dresden, Germany

2. Institute of Lightweight Engineering and Polymer Technology, TUD Dresden University of Technology, 01069 Dresden, Germany

Abstract

Clinching is a mechanical joining technology, in which a mainly form-fit joint is created by means of local cold forming. To characterize the load-bearing behavior of such joints, they are typically analyzed destructively, for example by tensile-shear tests in combination with metallographic sections. However, both the initiation and progress of failure can only be described to a limited extent by this method. Furthermore, these tests allow only limited conclusions about clinch points under in-service loading. More purposefully, clinch points can be analyzed nondestructively by combining in-situ computed tomography (CT) and transient dynamic analysis (TDA). The TDA continuously measures the dynamic behavior of the specimen and indicates failure events like crack initiation, which then can be evaluated thoroughly by stopping the test and performing a CT scan. To qualify the TDA for this task, it is necessary to link the observed damage behavior with specific dynamic characteristics. In this work, the complementation of in-situ CT and TDA is investigated by testing a clinched single-lap tensile-shear specimen made of aluminum. The testing procedure is stepwise: at certain displacement levels, the specimen is investigated by in-situ CT and TDA. While the in-situ CT provides the location, extent, and development of the failure phenomena, the TDA uses this information to evaluate the dynamic signal and detect relevant frequency ranges, which indicate damage events. The results demonstrate, that failure initiation and progression can be analyzed efficiently by combining both measuring systems. The TDA reliably detects relevant signal changes in the monitored frequency band. By means of in-situ computed tomography, the corresponding failure phenomena can be described in detail, enhancing the understanding of the load-bearing and deformation behavior of clinch points. The concatenation of characteristic signal changes and observed failure phenomena can henceforth be transferred to analyze complex structures during operation nondestructively by TDA.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3