Affiliation:
1. Chair of Forming and Machining Processes, TUD Dresden University of Technology, Dresden, Germany
2. Institute of Lightweight Engineering and Polymer Technology, TUD Dresden University of Technology, 01069 Dresden, Germany
Abstract
Clinching is a mechanical joining technology, in which a mainly form-fit joint is created by means of local cold forming. To characterize the load-bearing behavior of such joints, they are typically analyzed destructively, for example by tensile-shear tests in combination with metallographic sections. However, both the initiation and progress of failure can only be described to a limited extent by this method. Furthermore, these tests allow only limited conclusions about clinch points under in-service loading. More purposefully, clinch points can be analyzed nondestructively by combining in-situ computed tomography (CT) and transient dynamic analysis (TDA). The TDA continuously measures the dynamic behavior of the specimen and indicates failure events like crack initiation, which then can be evaluated thoroughly by stopping the test and performing a CT scan. To qualify the TDA for this task, it is necessary to link the observed damage behavior with specific dynamic characteristics. In this work, the complementation of in-situ CT and TDA is investigated by testing a clinched single-lap tensile-shear specimen made of aluminum. The testing procedure is stepwise: at certain displacement levels, the specimen is investigated by in-situ CT and TDA. While the in-situ CT provides the location, extent, and development of the failure phenomena, the TDA uses this information to evaluate the dynamic signal and detect relevant frequency ranges, which indicate damage events. The results demonstrate, that failure initiation and progression can be analyzed efficiently by combining both measuring systems. The TDA reliably detects relevant signal changes in the monitored frequency band. By means of in-situ computed tomography, the corresponding failure phenomena can be described in detail, enhancing the understanding of the load-bearing and deformation behavior of clinch points. The concatenation of characteristic signal changes and observed failure phenomena can henceforth be transferred to analyze complex structures during operation nondestructively by TDA.
Funder
Deutsche Forschungsgemeinschaft