Investigation to enhance the mechanical properties of damaged flat-clinching joints by reconditioning processes

Author:

Ouyang Xiao123,Zhang Huiyang123,Wang Yongfei2,He Qinghui123,Chen Chao123ORCID

Affiliation:

1. Light Alloy Research Institute, Central South University, Changsha, China

2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha, China

3. School of Mechanical and Electrical Engineering, Central South University, Changsha, China

Abstract

Joint damage could reduce component reliability and safety. In this paper, a simple and convenient reconditioning process for flat-clinching joints was proposed. The damaged joint was compressed by applying reconditioned force through the upper and lower flat dies to improve the mechanical properties. Compared to other exiting research, the process is easy to operate and requires no additional attachments. Meanwhile, the damage status of the loaded joint, material flow and the causes of improving mechanical properties were illustrated. In addition, the effect law of various reconditioned forces on the mechanical properties of the joints was also investigated. The results show that the flat-clinching joints are damaged when loaded beyond the shear load. However, the mechanical properties can be reconditioned when the interlocking structure remains unbroken. The main reason is that the reconditioning process reconstructs the interlocking structure and increases the neck thickness. Besides, the joint bulge height is also reduced by the reconditioning process. With increased reconditioning forces, the mechanical properties improve. The best mechanical properties are obtained at the recondition force of 40 kN. Compared to the original damaged joints, the shear force and energy absorption of the 40 kN reconditioned joints increased by 33.5% and 70.2%. This is important to promote the development of reconditioning processes and ensure part safety.

Funder

Fundamental Research Funds for the Central Universities of Central South University

Central South University Innovation-Driven Research Programme

Huxiang Young Talents Program of Hunan Province

National Natural Science Foundation of China

the Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University

Open Research Fund of State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3