An investigation on bending fatigue in a corrosive environment of dual-phase 1000 sheet steel RSW joints and damage model via experiment and numeric analysis

Author:

Göktaş Mustafa1,Demir Bilge1,Elitas Muhammed2ORCID

Affiliation:

1. Faculty of Engineering, Department of Mechanical Engineering, Karabuk University, Karabuk, Türkiye

2. Faculty of Engineering, Department of Mechanical Engineering, Bilecik Şeyh Edebali University, Bilecik, Türkiye

Abstract

Fatigue, corrosion, and fatigue damage models are best addressed to improve and understand the service performance of materials, particularly automotive steel. This study is an attempt to experimentally and finite element investigates plain bending fatigue performance and damage model of DP 1000 sheet steel resistance spot welding (RSW) joints in 3% NaCl aqueous corrosive treatment. RSW applications were carried out using different weld currents. The joint samples were then subjected to optical image analysis, tensile shear, and fatigue tests (3% NaCl-aqueous and normal atmosphere). A proper damage model of RSW junctions was developed and corrected by numeric analysis. Besides, RSW nugget formation, tensile shear, and plain bending fatigue tests were also applied. Consequence, fatigue behavior, tensile load carrying capacity, and effective fracture behavior of resistance spot welded joint specimens were evaluated. Results showed that a corrosive environment negatively affected fatigue performance. With the developed model, it was observed that the fatigue life of the samples decreased by 30–35% in the fatigue tests performed in the corrosive environment. Experimental and numerical analysis results of plain bending were compatible.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3