Performance studies on vapour compression refrigeration system using PCM placed between wall and coil of the evaporator

Author:

Raveendran P. Saji1ORCID,Karthikeyan R.1,Murugan P.C.2,Sanjay S.1,Vivek Raj S.1,Selva Kannan N.K.1,John Dains K.3

Affiliation:

1. Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India

2. Department of Automobile Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India

3. Department of Mechanical Engineering, St Xavier’s Catholic College of Engineering, Nagercoil, Tamilnadu, India

Abstract

The vapour compression refrigeration system (VCRS) plays a vital role in the food preservation and it consumes more energy. The use of energy-efficient refrigerants, phase change materials (PCMs) in the condenser and evaporator, and the replacement of existing components, as well as nano-refrigerants, are all efforts made to increase the energy efficiency of the VCRS from different perspectives. Among them, the PCMs play a prominent role and gives sustainable energy efficiency in VCRS. This paper investigates and clarifies the energy efficiency of VCRS can be improved by incorporating a PCM into the evaporator cabin. The experimental results demonstrated substantial effects on system performance such as an improvement in COP of 7.1%, a decrease in per day energy consumption by 6.7%, and comparatively smaller temperature fluctuations within the freezer cabinet. The exergy efficiency is increased and Total Equivalent Warming Impact (TEWI) is decreasing than that of the system without PCM by 7.6 and 7% respectively. This technique is integrated into the VCRS, leading to savings in energy while also being useful for power interruptions common in areas with low grid reliability.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3