Effect of thermal asymmetries on the entropy generation analysis of a variable viscosity Couette–Poiseuille flow

Author:

Mondal Pranab K1,Gaikwad Harshad1,Kundu Pranab Kumar2,Wongwises Somchai3

Affiliation:

1. Mechanical Engineering Department, IIT Guwahati, Guwahati, India

2. Mechanical Engineering Department, NIT Sikkim, Sikkim, India

3. Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, Thailand

Abstract

The influence of viscous dissipation on forced convective heat transfer and entropy generation rate in the conduction limit for a variable-viscosity flow between asymmetrically heated parallel plates is studied in an analytical framework consistent with perturbation method. The study considers a flow of Newtonian fluid under the simultaneous action of an applied pressure gradient and an axial movement of the upper plate. The present study emphasizes on the effect of dissipative heat produced by the movable upper plate as well as viscous heating generated due to applied pressure gradient on the underlying thermo-hydrodynamic transport. A few non-dimensional parameters such as dimensionless upper plate velocity, degree of asymmetry parameter and Brinkman number have been defined and their influential role on the variation of temperature profile, the Nusselt number and entropy generation number has been discussed in detail. The study shows that the variation of Nusselt number exhibits an unbounded swing, which, in turn, leads to appearance of the point of singularities at some cases of asymmetrical plate heating. Finally, the source of appearance of point of singularities has been discussed in view of the energy balance, and from the second-law analysis of thermodynamics.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3