Numerical analysis of a poroelastic cartilage model: Investigating the influence of changing material properties in osteoarthritis

Author:

Uzuner Sabri12ORCID

Affiliation:

1. Mechanical and Manufacturing Engineering, Faculty of Engineering, University of Calgary, Calgary, Alberta, Canada

2. Department of Mechatronics, Faculty of Engineering, University of Duzce, Duzce, Marmara, Turkey

Abstract

Several changes occur in both the cartilage's material properties and anatomical structure as osteoarthritis progresses. Unlike most numerical studies that solely consider individual changes, our study aimed to understand the impact on cartilage mechanics by considering the combined effect of material properties and cartilage thickness varied with osteoarthritis progression. In total, 3 three-dimensional finite element models, representing the intact, early, and late osteoarthritis conditions, were developed to simulate a load-bearing area in the knee. The articular cartilage was modelled as fluid-saturated linear biphasic poroelastic to incorporate solid-fluid interaction. All models underwent prolonged creep (50 N) and relaxation (0.3 mm) analyses for 600 s. In the early stage of osteoarthritis, the tibial cartilage demonstrated an overall stiffer behaviour attributed to cartilage swelling despite decreased stiffness at the material level. On the other hand, in the late stage of osteoarthritis, the decrease in cartilage thickness led to increased knee deformation. Additionally, increased permeability resulted in accelerated fluid exudation across all osteoarthritis models, and the elevation in void ratio further intensified fluid pressure within the cartilage to a higher magnitude. Furthermore, these changes collectively influenced both the magnitude and distribution of the outcomes. A holistic understanding of the material properties altered in osteoarthritis may contribute to a better understanding of the mechanical performance of cartilage during disease progression.

Funder

Ulusal Metroloji Enstitüsü, Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3