Indentation creep behavior of pulsed Tungsten inert gas welded Ti-5Al-2.5Sn alloy joints by nanoindentation and atomic force microscopy

Author:

Muhammad Hassaan1,Massab Junaid1ORCID,Muhammad Shamir2,Alkuhayli Abdulaziz3,Noman Abdullah M.3,Al-Shamma’a Abdullrahman A.3

Affiliation:

1. Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan

2. Offshore Renewable Energy Engineering Centre, Cranfield University, UK

3. Electrical Engineering Department, King Saud University, Riyadh, Saudi Arabia

Abstract

Indentation creep was used to analyze the heterogeneity of the mechanical properties in base metal, heat affected zone and fusion zone of titanium alloy weldments obtained using TIG welding process which is generally employed in aerospace industries. For all the weld zones, creep deformation was analyzed using nanoindenter, AFM and microhardness testing. Nanoindentation creep depth was plotted with respect to time using data from the hold stage and CSRs were calculated using empirical relations. The analysis of creep stress exponents (CSE) was indicative of an active creep mechanism for all the weld zones however, a notable variation between the stress exponents and creep mechanism was observed among base metal, heat affected zone and fusion zone. Moreover, Vickers microindentation was used to measure creep of Ti-5Al-2.5Sn alloy weldment using Sargent-Ashby model. However, it did not give the realistic values creep behavior when compared to literature and nanoindentation measurements. It was observed that the phase change, grain size and the loading strain rate (LSR) significantly affected the creep behavior of the Ti-5Al-2.5Sn weldment.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3