Deformation behavior of advanced high strength steel with different strain hardening exponents during tube hydroforging

Author:

Fischer Jeremy J1,Nikhare Chetan P1ORCID

Affiliation:

1. Penn State Erie – The Behrend College, Erie, PA, USA

Abstract

Hydroforging is an innovative forming method used to form tubes with irregular cross-sections by using internal fluid pressure and axial force. Normally tube forming operations use solid mandrel to expand/bend the tube which does negative effect on tube or mandrel due to friction, buckling, and wrinkling. In this study, the tube material with various strain hardening exponents were hydroforged in a two-step numerical analysis with ramped fluid pressure and axial compression. The tube will be allowed to bulge with a ramped internal pressure and then shaped to a maximum expansion ratio by the axial compression in the shaping step. Some advanced materials exhibit the change in strain hardening exponent based on the plastic strain, the study focuses how the strain hardening exponent affects the deformation mechanics in tube hydroforging. It was found that the formability of tube during hydroforging is affected by the strain hardening exponent. The results show that tube can achieve a greater wall thickness reduction with increase in strain hardening exponent. Also, higher strain hardening exponent allowed tube to achieve a greater expansion ratio when axially compressed in the forging step. It was also observed that as the strain hardening exponent increases, the internal pressure requirements for the bulging and shaping steps decrease. The two model configurations of N01 and N02 failed from bursting and wrinkling, respectively, while every other model could form to the targeted disk-like shape. The forging step of the process showed that the die force for axial compression decreased as the strain hardening exponent increased for all successful models.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Erratum to Deformation behavior of advanced high strength steel with different strain hardening exponents during tube hydroforging;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2022-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3