Effect of milling parameters on the surface quality of a flax fiber-reinforced polymer composite

Author:

Slamani M12,Chafai H1,Chatelain JF1ORCID

Affiliation:

1. Mechanical Engineering Department, École de Technologie Supérieure, Montreal, Canada

2. MMS Lab, Faculty of Technology, University of M’sila, M'sila, Algeria

Abstract

Flax fiber-reinforced polymer composites are an interesting alternative to synthetic fiber-reinforced polymer composites for many engineering applications. When machining flax fiber-reinforced composite materials that are by definition heterogeneous, the matrix and the fibers react differently and hence many sorts of damage may occur such as poor surface roughness, delamination, and fluffing. The novelty of the current work lies in identifying the major factors that affect the quality of the milled surface of composites reinforced with flax fibers and provides recommendations and collaborative solutions to the composite machining community. In this study, the impact of cutting conditions (cutting speed, feed rate, and fiber orientation) on the cutting forces and surface roughness during milling of the flax/epoxy composite is investigated. For this purpose, slotting tests are performed on flax fiber-reinforced polymer plates using a carbide end mill tool based on a full factorial design of experiment. Furthermore, a randomization in the order in which experimental runs are done is used to reduce bias by balancing the effect of uncontrolled variables that have not been accounted for in the experimental design. It is concluded that the feed rate has the most influence on the cutting forces and roughness parameters. Moreover, the fibers orientation also has a significant effect on the outputs, and the cutting speed has less effect but it remains significant.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3