Forced convection heat transfer of concurrent Al2O3/PCM nanofluid flows in a concentric double tube

Author:

Ho C J1,Huang S H1,Lai Chi-Ming2ORCID

Affiliation:

1. Department of Mechanical Engineering, National Cheng-Kung University, Tainan, ROC

2. Department of Civil Engineering, National Cheng-Kung University, Tainan, ROC

Abstract

A trend toward high power and relatively small package sizes in electronic components has resulted in a dramatic increase in the corresponding heating flux; thus, the enhancement of internal convection has been a focus of attention. In this study, to improve the thermal efficiency of the internal flow, the forced-convection heat transfer of concurrent flows of functional working fluids through the outer annulus/inner tube of a concentric double tube was investigated experimentally and compared to that of an identical double tube filled with water, for which limited information is available. The fluids in the outer annulus/inner tube were 0.5% Al2O3-water nanofluid/pure water, 1.0% Al2O3-water nanofluid/pure water, and 1.0% Al2O3-water nanofluid/4.63% phase-change nanofluid. The nominal values of the main parameters were as follows: heating power = 120 W, 160 W, and 200 W; Reynolds number = 800, 1300, and 1700; and concurrent flow ratio = 0.1, 0.29, 0.45, 1.0, 1.6, and 2.38. The results indicated that when the outer annulus and the inner tube were filled with a 1.0% Al2O3-water nanofluid and a 4.63% PCM emulsion/or water, respectively, a high total flow rate and high flow ratio could suppress the rise in the wall temperature and increase the average heat transfer coefficients. Although using a functional working fluid may enhance heat transfer, this gain is considerably smaller than the increase in the pressure drop, resulting in the figures of merit for nearly all the considered cases being lower than 1.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3