Prediction of friction stir welding performances of dissimilar AA3003-H12 and C12200-H01 using machine learning algorithms

Author:

Shinde Gurunath V1ORCID,Suryawanshi Abhijeet2,Behera Niranjana3ORCID

Affiliation:

1. Department of Mechanical Engineering, G.H. Raisoni College of Engineering and Management, Pune, India

2. Department of Mechanical Engineering, Marathwada Mitramandal's College of Engineering, Pune, India

3. School of Mechanical Engineering, VIT, Vellore, Tamilnadu, India

Abstract

Tests specimens were prepared by friction stir welding of two dissimilar metals aluminum and copper. The specimens were subjected to mechanical tests to calculate the ultimate tensile strength, yield strength, percentage elongation, and impact energy. Four different machine learning algorithms (AdaBoost, CatBoost, Gradient Boosting, and XGBoost) were applied for developing the ML models in predicting the performance parameters such as ultimate strength, yield strength, percentage elongation, and impact energy. Pin type, weld speed, rotational speed, and shoulder diameter were considered as the input parameters for the model. Training, testing, and validation were carried out by considering 60%, 20%, and 20% of the available data respectively. In terms of accuracy (lower MAE, lower RMSE, greater R2 value, and lower AAD%), CatBoost model, Gradient Boosting model, and XGBoost model performed better than the AdaBoost model in predicting the ultimate tensile strength, yield strength, percentage elongation, and impact energy. Compared to other models, AdaBoost model has only few hyperparameters for fine-tuning. During hyperparameters tuning, AdaBoost model showed accuracy only within a narrow range of values of features.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3