Comparative strength and stability analysis of conventional and lighter composite flexible risers in ultra-deep water subsea environment

Author:

Nammi Sathish K1ORCID,Gupta Ranjeetkumar2ORCID,Pancholi Ketan3ORCID

Affiliation:

1. Queen Mary University of London, London, UK

2. National Composites Centre, Bristol & Bath Science Park, Emersons Green, Bristol, UK

3. School of Engineering, Sir Ian Wood Building, Robert Gordon University, Aberdeen, UK

Abstract

The hybrid flexible risers have a multi-layered structure and use thermoplastic composite for the pressure and tensile armour. In contrast, a conventional flexible riser uses heavier carbon steel as armour which significantly contributes to its weight. For shallow-water applications, the conventional risers are widely used in offshore oil and gas industry due to their corrosion resistance properties and low transportation costs. However, the weight of conventional risers is a key limitation in ultra-deep-water applications. This shortcoming can be addressed by including a lightweight carbon fibre reinforced polymer (CFRP) composite as one of the individual layers. The use of CFRP reduces the effective tension at the hang off point which is a key limitation in extending the range of flexible risers. Here, the dynamic stability and functional load interactions of both risers (viz: a thermoplastic CFRP riser and a conventional flexible riser) at a water depth of 3000 m were studied. A global analysis was performed considering the onerous 1000-year hurricane wave with 100-year currents. The investigation considered ±150 m vessel offsets, three vessel headings (viz: 135, 180, 225°) and three vessel draughts (ballasted, empty, loaded). Additionally, a numerical model with a variable bending stiffness was used to capture the orthotropic material behaviour of a flexible riser. Results showed that the buoyancy requirement and effective tension were 2.1 times greater and 2% higher for the conventional riser compared to its composite counterpart. The most onerous case for a conventional riser was at zero offset whereas for its composite counterpart was at –150 m along the length of a riser. It was observed that the heavier masses of a conventional riser aid in aligning the weight vector with the upward direction of the buoyancy force. Contrarily, the composite risers undergo large displacements leading to misalignments and instability. Furthermore, the observed bending radius of the flexible riser was found to be within the allowable minimum bend radius at the hog bend location.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On biodegradability of 3D printed polyvinylidene fluoride composites;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-10-11

2. The Effect of Ice Floe on the Strength, Stability, and Fatigue of Hybrid Flexible Risers in the Arctic Sea;Journal of Composites Science;2023-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3