A geometric mass control approach in level set method to simulate multiphase flows with complex interface topologies, case study: Oblique coalescence of gas bubbles in a liquid

Author:

Hadidi Amin1ORCID,Eshagh Nimvari Majid2

Affiliation:

1. Department of Mechanical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran

2. Faculty of Engineering, Amol University of Special Modern Technologies, Amol, Iran

Abstract

A geometrical mass control loop is proposed in this research to use in the level set method in order to simulation of multiphase flows with complex topologies of the interface and a case study is investigated using proposed scheme. In this regard oblique interaction and coalescence of bubbles in a liquid is investigated. The level set method is suffering from poor mass conservation in the case of severe changes of interface and complex topologies encountered in a wide range of problems which one of them is oblique coalescence of the bubbles. Despite the use of full re-initialization and reconstruction approach of the level set method as well as application of fine mesh, deviation of mass conservation of the method even becomes 100%. Therefore, simulation of such problems sometimes becomes impossible using this method. So in the geometric mass control loop, mass deviation in each time step is calculated and is compensated in the dispersed phase, which prevents the propagation of mass error entire the simulation. Efficiency of proposed geometrical mass control loop is verified by simulation of oblique interaction and coalescence of gas bubbles in a liquid. The governing equations are continuity and momentum equations which have been discretized using the finite volume method and the SIMPLE algorithm. The results outlined in the present study well agree with the existing experimental and numerical results. Results show that the maximum amount of mass dissipation was less than 4%. Therefore, the level set method with proposed geometric mass control loop could be used properly for the simulation of multiphase flows with sharp and high variations in the interface.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of bubble volume on the sweeping velocity of air bubbles in horizontal pipelines in water supply system;Frontiers in Earth Science;2023-06-01

2. Effect of strength and direction of external magnetic field on dynamics of vortices in a square lid-driven cavity flow;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2021-03-22

3. Numerical study of bubbly flow in a swirl atomizer;Physics of Fluids;2020-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3