Investigation of machinability indicators during sustainable milling of 17-4PH stainless steel under dry and MQL environments

Author:

Yurtkuran Hakan1,Boy Mehmet2,Günay Mustafa3ORCID

Affiliation:

1. Akmağdeni Vocational High School, Yozgat Bozok University, Yozgat, Turkey

2. TOBB Vocational High School, Karabük University, Karabük, Turkey

3. Department of Mechanical Engineering, Karabük University, Karabük, Turkey

Abstract

17-4PH steel, which has the perfect combination of corrosion resistance and high mechanical properties, is especially preferred in defense and aerospace applications, but its machinability is poor. Thus, an extensive research has been conducted on its milling under sustainable cutting regimes (dry and minimum quantity lubrication_MQL) to contribute to both more efficient use and sustainable machining. First, the changes in resultant cutting force ( Fr), the average surface roughness ( Ra), the mean roughness depth ( Rz) and total energy consumption ([Formula: see text]) were investigated after the experiments performed by applying the L18 orthogonal array. Subsequently, machining conditions were optimized for the minimization of machinability indicators with the Taguchi-based grey relational analysis technique. Finally, the predictive models for these indicators were developed by regression analysis. The order of importance for Fr and [Formula: see text] was the depth of cut and feed, while for Ra and Rz this ordering was found to be feed rate and cutting regime. Short curved chips formed in MQL cutting regime contributed positively to the minimization of the considered machinability indicators. Although the energy consumption due to spindle speed increased with increasing cutting speed in dry cutting environment, the decrease in material strength resulted in a decrease in [Formula: see text]. Since the cooling effect of MQL reduces the cutting temperature, material softening and thus the expected decrease in cutting resistance could not be achieved, so the decrease in [Formula: see text] was not as much as dry cutting. Optimum machining conditions were determined as MQL cutting regime, the cutting speed of 120 m/min, the cutting depth of 0.5 mm and feed rate of 0.05 mm/rev. The determination coefficients of the predictive models developed by regression analysis showed that these models can be used safely in up milling.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3