Improving Diagnostic Efficiency with Frequency Double-Trees and Frequency Nets in Bayesian Reasoning

Author:

Kunzelmann Alexandra K.12,Binder Karin3,Fischer Martin R.2,Reincke Martin1,Braun Leah T.12ORCID,Schmidmaier Ralf12

Affiliation:

1. Department of Internal Medicine IV, University Hospital, LMU Munich, Germany

2. Institute of Medical Education, University Hospital, LMU Munich, Munchen, Bayern, Germany

3. Mathematics Education, LMU Munich, Munchen, Bayern, Germany

Abstract

Background. Medical students often have problems with Bayesian reasoning situations. Representing statistical information as natural frequencies (instead of probabilities) and visualizing them (e.g., with double-trees or net diagrams) leads to higher accuracy in solving these tasks. However, double-trees and net diagrams (which already contain the correct solution of the task, so that the solution could be read of the diagrams) have not yet been studied in medical education. This study examined the influence of information format (probabilities v. frequencies) and visualization (double-tree v. net diagram) on the accuracy and speed of Bayesian judgments. Methods. A total of 142 medical students at different university medical schools (Munich, Kiel, Goettingen, Erlangen, Nuremberg, Berlin, Regensburg) in Germany predicted posterior probabilities in 4 different medical Bayesian reasoning tasks, resulting in a 3-factorial 2 × 2 × 4 design. The diagnostic efficiency for the different versions was represented as the median time divided by the percentage of correct inferences. Results. Frequency visualizations led to a significantly higher accuracy and faster judgments than did probability visualizations. Participants solved 80% of the tasks correctly in the frequency double-tree and the frequency net diagram. Visualizations with probabilities also led to relatively high performance rates: 73% in the probability double-tree and 70% in the probability net diagram. The median time for a correct inference was fastest with the frequency double tree (2:08 min) followed by the frequency net diagram and the probability double-tree (both 2:26 min) and probability net diagram (2:33 min). The type of visualization did not result in a significant difference. Discussion. Frequency double-trees and frequency net diagrams help answer Bayesian tasks more accurately and also more quickly than the respective probability visualizations. Surprisingly, the effect of information format (probabilities v. frequencies) on performance was higher in previous studies: medical students seem also quite capable of identifying the correct solution to the Bayesian task, among other probabilities in the probability visualizations.HighlightsFrequency double-trees and frequency nets help answer Bayesian tasks not only more accurately but also more quickly than the respective probability visualizations. In double-trees and net diagrams, the effect of the information format (probabilities v. natural frequencies) on performance is remarkably lower in this high-performing sample than that shown in previous studies.

Funder

Ludwig-Maximilians-Universität München

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Health Policy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3