Differential Expression of Matrix Metalloproteinase-9 Gene in Wounds of Type 2 Diabetes Mellitus Cases With Susceptible -1562C>T Genotypes and Wound Severity

Author:

Singh Kanhaiya1,Agrawal Neeraj K.2,Gupta Sanjeev K.3,Mohan Gyanendra4,Chaturvedi Sunanda4,Singh Kiran1

Affiliation:

1. Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India

2. Department of Endocrinology and Metabolism, IMS, Banaras Hindu University, Varanasi, India

3. Department of General Surgery, IMS, Banaras Hindu University, Varanasi, India

4. Indian Railway Cancer Hospital and Research Centre, N.E.R., Varanasi, India

Abstract

Coordinated extracellular matrix deposition is a prerequisite for proper wound healing which is mainly orchestrated by matrix metalloproteinases (MMPs). Diabetic wounds generally show compromised wound healing cascade and abnormal MMP9 concentration is one of the cause. Our group have recently shown that the polymorphism -1562 C>T in the promoter region of MMP9 gene is associated with pathogenesis of wound healing impairment in T2DM patients. In present study we have done expression profiling of MMP9 gene in the wound biopsy of DFU cases. Expression level of MMP9 mRNA was then compared with susceptible -1562 C>T genotypes (TT and CT) as well as with different grades of wounds. We also screened the promoter region of MMP9 gene to see the methylation state of CpGs present there. Our study suggests that levels of MMP9 mRNA increase significantly with the wound grades. Moreover, the MMP9 levels in diabetic wounds were also dependent on -1562 C>T polymorphism in the promoter region of MMP9. Diabetic wounds also showed a significant unmethylated status of MMP9 promoter compared to control wounds. In conclusion, The risk genotypes of -1562 C>T polymorphism along with lack of methylation of CpG sites in MMP9 gene promoter may result in altered expression of MMP9 in wounds of T2DM cases resulting into nonhealing chronic ulcers in them.

Publisher

SAGE Publications

Subject

General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3