The Development of an Experimental Model of Contaminated Muscle Injury in Rabbits

Author:

Eardley Will G. P.1,Martin Kevin R.2,Taylor Chris2,Kirkman Emrys2,Clasper Jon C.1,Watts Sarah A.2

Affiliation:

1. Royal Centre for Defence Medicine, Birmingham, UK

2. Defence Science and Technology Laboratory, Salisbury, Wiltshire, UK

Abstract

Extent of tissue trauma and contamination determine outcome in extremity injury. In contrast to fracture, osteomyelitis, and closed muscle injury studies, there are limited small animal models of extremity muscle trauma and contamination. To address this we developed a model of contaminated muscle injury in rabbits. Twenty-eight anesthetized New Zealand White rabbits underwent open controlled injury of the flexor carpi ulnaris (FCU). Twenty-two animals had subsequent contamination of the injured muscle with Staphylococcus aureus. All animals were sacrificed at 48 hours and the level of muscle injury and contamination determined by quantitative histological and microbiological analysis. A 1-kg mass dropped 300 mm onto the mobilized FCU resulted in localized necrosis of the muscle belly. Delivery of a mean challenge of 3.71 × 106 cfu/100 µL S aureus by droplet spread onto the injured muscle produced a muscle contamination of 8.79 × 106 cfu/g at 48 hours. Ipsilateral axillary lymph nodes demonstrated clinically significant activation. All animals had normal body temperature and hematological parameters throughout and blood and urinalysis culture at autopsy were negative for organisms. This model allows reproducible muscle injury and contamination with the organism ubiquitous to extremity wound infection at a level sufficient to allow quantitative assessment of subsequent wound care interventions without incurring systemic involvement.

Publisher

SAGE Publications

Subject

General Medicine,Surgery

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3