Affiliation:
1. Department of Aerospace Engineering, University of Pisa, Italy.
Abstract
The paper deals with the study of the temperature effects on the performances of fly-by-wire hydraulic actuators. The activity is developed via both experiments and simulations, using a primary flight actuator of a modern fly-by-wire jet trainer as reference hardware. A dedicated experimental set-up is arranged, by integrating a thermal chamber with a real-time actuator control system developed in the MATLAB-Simulink-xPC Target environment, and an extensive test campaign is performed on the actuator in environmental control conditions. In particular, both the static and the dynamic performances are concerned, characterizing the valve threshold, the valve motor gain, the open-loop, and closed-loop frequency responses. The tests are performed at ambient, extreme hot (71 °C), cold (−20 °C), and extreme cold (−40 °C) temperatures. Experimental results are reported and discussed, providing a physical interpretation of temperature sensitivity effects. Concerning the simulation studies, they started from a detailed model of the actuator dynamics, previously developed and validated by the author at ambient temperature. The model is adapted for taking into account the temperature effects, and an experimental validation is obtained at servovalve level. The influence of temperature at actuator level is predicted by simulation, highlighting and discussing the expected closed-loop control concerns.
Subject
Mechanical Engineering,Control and Systems Engineering
Reference18 articles.
1. Flight Control Systems
2. Merritt H. E. Hydraulic control systems, 1967 (John Wiley & Sons, New York).
3. Performance of temperature-sensitive magnetic actuators
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献