Control of an underactuated remotely operated underwater vehicle

Author:

Lau M W S1,Swei S S M1,Seet G1,Low E1,Cheng P L1

Affiliation:

1. Nanyang Technological University Robotics Research Centre, School of Mechanical and Production Engineering Singapore

Abstract

In this paper, a steady state model of a thruster and a general equation of rigid-body motion for an underwater robotic vehicle (URV) is presented. By means of modelling, simulation and experiments, the model parameters have been identified. These are used in the analysis and design of closed-loop stabilizing controllers for two control modes: manual cruise and station keeping. Since the URV under study has fewer actuators than possible degrees of freedom, it is necessary to limit the controllable degrees of freedom. These variables are eventually selected based on the inherent vehicle dynamics. Using the Lyapunov direct method, which has been shown to be appropriate for such non-linear systems, appropriate stabilizing controllers have been designed. The manual cruise mode controller is non-linear and would result in chattering in the thruster outputs, but simulations show that the desired results can be achieved. The station-keeping mode controller has a proportional-integral-derivative (PID) structure and its gain values are designed using a non-linear optimizing approach. Simulation and swimming pool tests for the heave and yaw directions have shown that such a controller is possible.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A regressor-free robust adaptive controller for autonomous underwater vehicles;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2016-10-08

2. Precise trajectory control for an inspection class ROV;Ocean Engineering;2016-01

3. Nonlinear adaptive trajectory control of multi-input multi-output submarines with input constraints;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2015-12-23

4. Multi-input submarine control via ℒ1 adaptive feedback despite uncertainties;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2014-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3