Induction motors fault diagnosis using a stacked sparse auto-encoder deep neural network

Author:

Jorkesh Saeid1,Gholaminejad Azadeh1,Poshtan Javad1ORCID

Affiliation:

1. Electrical department, Iran University of Science and Technology, Tehran, Iran

Abstract

In this article, deep neural network and stacked sparse auto-encoder deep neural network performances in fault diagnosis are compared. Methods are employed experimentally for the detection and isolation of an induction motor’s condition (healthy, bearing outer race fault, stator winding short circuit, and rotor broken bar) in the presence of unbalanced power supply and pump dry running disturbances. Pre-processing and de-noising is performed on three-phase electrical current signals using fast Fourier transform and independence component analysis algorithm, respectively. Experimental results show that sparse auto-encoder deep neural network method has outperformed and diagnosed the aforementioned faults in the presence of disturbances with a highly reliable accuracy rate of 90.65%.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydroelectric Unit Vibration Signal Feature Extraction Based on IMF Energy Moment and SDAE;Water;2024-07-11

2. Bearing fault diagnosis based on data missing and feature shift suppression strategy;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2024-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3