Cross-coupling synchronous velocity control using model reference adaptive control scheme in an unsymmetrical biaxial winding system

Author:

Nguyen Huy Hung12ORCID,Duong Van Tu1,Kim Dae Hwan1,Kim Hak Kyeong1,Kim Sang Bong1ORCID

Affiliation:

1. Department of Mechanical Design Engineering, College of Engineering, Pukyong National University, Busan, Korea

2. Faculty of Electronics and Telecommunications, Saigon University, Ho Chi Minh City, Vietnam

Abstract

Motion control with high accuracy for each axial system is the fundamental requirement to reduce a synchronous motion error of a multi-axis system. Especially, designing a model-based controller for an uncertainty system with unknown parameters is not easy without using system identification. To overcome the mentioned issue, this article proposes a cross-coupling synchronous velocity controller using a backstepping-based model reference adaptive control scheme in an unsymmetrical biaxial winding system called a transformer winding system. The proposed controller deals not only with the uncertainty but also with the recursive structure of the system. The backstepping technique for the recursive structural system and the model reference adaptive control method for the uncertainty of the system are designed to stabilize two axial systems with unknown parameters. An auxiliary system is added to build the proposed controller for coping with input constraints of physical actuators. To improve the proposed controller’s ability to cope with external disturbances, a dead-zone modification is utilized to modify the adaptation laws to avoid the drift phenomenon. Moreover, a cross-coupling mechanism is integrated into the proposed controller to reduce the synchronous velocity error between the velocities of the biaxial winding system. The proposed controller is also transformed into discrete time to be run on a digital signal processor alone chip. The experimental results are shown to verify the high performance and efficiency of the proposed controller for practical applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3