Radial basis function neural network–based adaptive sliding mode suspension control for maglev yaw system of wind turbines

Author:

Cui Guodong1ORCID,Cai Bin1,Su Baili1,Chu Xiaoguang1

Affiliation:

1. School of Engineering, Qufu Normal University, Rizhao, China

Abstract

The maglev yaw system of wind turbines adopts maglev-driving technology instead of traditional gear-driving technology. It has many advantages, such as no lubrication, simple structure, and high reliability. However, the stable suspension control of maglev yaw system is difficult to achieve due to the unknown disturbance caused by crosswind in a practical environment. In this article, an adaptive sliding mode cascade controller based on radial basis function neural network is proposed for the stable suspension control of maglev yaw system. First, the dynamic mathematical model of maglev yaw system is established. Second, an adaptive sliding mode robust controller using radial basis function neural network is designed as the outer loop air gap tracking controller for precise position control, where radial basis function neural network is employed to estimate the unknown parameter containing disturbance. To eliminate the limitation of the traditional exponential approach law based on sign function in the sliding mode control, an exponential reaching law based on hyperbolic tangent function is introduced to guarantee the smooth suspension control of maglev yaw system. Third, an adaptive controller as the inner loop current tracking controller is designed. Finally, the corresponding simulations and analysis are carried out. The simulation results show that the proposed controller can guarantee the suspension stability of maglev yaw system and suppress the disturbance effectively. Compared with the cascade proportional–integral–derivative controller and improved double power reaching law integral sliding mode controller, the proposed controller has a faster dynamic response and stronger robustness in the presence of unknown external disturbance.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3