Automatic model bank selection in multiple model identification of gas turbine dynamics

Author:

Hosseini SeyedM1,Fatehi Alireza1,Sedigh Ali K1,Johansen Tor A2

Affiliation:

1. Department of Electrical & Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran

2. Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway

Abstract

A multiple model structure of a prototype industrial gas turbine system is constructed under normal operation using a systematic method that incorporates non-linearity measure and H-gap metric tools with the multiple models technique. First, two new non-linearity indices for multiple input–multiple output systems are introduced and employed for decomposing the operating space of a gas turbine into some linear and non-linear modes. The non-linear modes may be further partitioned into some linear modes. The input and output data in each of the linear modes are used to construct an initial multiple model structure. In order to avoid the increase of the number of linear local models, the H-gap metric is extended to multiple input–multiple output systems and used to measure the similarity between linear local models and to merge the similar models. As a result, an algorithm is proposed for construction of multiple linear local models. The algorithm is employed for the identification of a single-shaft prototype industrial gas turbine.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3