Anti-pitching of high-speed multihull ships based on incremental predictive control

Author:

Xu Weidong1ORCID,Zhang Jun1ORCID,Zhong Mingjie1ORCID

Affiliation:

1. School of Electrical Information Engineering, Jiangsu University, Zhenjiang, China

Abstract

In order to enhance the suppression ability of high-speed multihulls against wave disturbance and reduce the amplitude of vertical motion, it is necessary to use two types of appendages, active T-foil and flap, to implement closed-loop anti-pitching. Aiming at the problems of sea wave disturbance and appendages input constraints, an anti-pitching scheme based on incremental predictive control is proposed. First, the vertical coupled motion model of the high-speed multihull ship is established, the frequency-domain and time-domain characteristics of random wave disturbance are analyzed, and the wave disturbance force and moment are estimated based on the integral disturbance model. On this basis, the incremental model of multihull vertical motion that includes the change rate of wave disturbance is used as the prediction model to reduce the influence of the average wave disturbance force and disturbance moment on vertical motion, improve the model prediction accuracy, and introduce the amplitude and change rate of heave and pitch into the objective function to minimize both. At the same time, in order to solve the input constraints of the anti-pitching appendages and reduce the amount of online calculation, the Lagrange multiplier method and the stair-like parameterization strategy are used to derive the analytical anti-pitching predictive control law and analyze the stability of the closed-loop system. The simulation results show that the proposed incremental predictive control effectively reduces the change rate and amplitude of heave and pitch, the heave displacement is reduced by 43.51%, and the pitch angle is reduced by 50.88%.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3