Neural network–based sliding-mode control of a tendon sheath–actuated compliant rescue manipulator

Author:

Wu Qingcong1ORCID,Wang Xingsong2,Chen Bai1,Wu Hongtao13

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. College of Mechanical Engineering, Southeast University, Nanjing, China

3. State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin, China

Abstract

The novel contribution of this article is to propose a neural network–based sliding-mode control strategy for improving the position-control performance of a tendon sheath–actuated compliant rescue manipulator. Structural design of a rescue robot with slender and compliant mechanical structure is introduced. The developed robot is capable of drilling into the narrow space under debris and accommodating complicated configuration in ruins. Dynamics modeling and parameters identification of a compliant gripper with flexible tendon sheath transmission are researched and discussed. Moreover, the neural network–based sliding-mode control scheme developed based on radial basis function network is proposed to improve the position-control accuracy of the gripper with modeling uncertainties and external disturbances. The stability of the proposed control system is demonstrated using Lyapunov stability theory. Further experimental investigation including trajectory-tracking experiments and step-response experiments are conducted to confirm the effectiveness of the proposed neural network–based sliding-mode control scheme. Experimental results show that the proposed neural network–based sliding-mode control scheme is superior to cascaded proportional–integral–derivative controller and conventional sliding-mode controller in position-control application.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

state key laboratory of robotics and system

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3